Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(13)2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37447588

RESUMO

In this paper, we present the development of a novel processing technology to tackle hard-to-recycle plastic packaging waste contaminated with food residues. The proof-of-concept (POC) technology can effectively separate food residual amounts from plastic waste materials to a level acceptable for further re-use or recycling of the plastic packaging. To assess this technology, we have conducted spectroscopic, thermal, and calorimetric characterizations of the obtained fractions, such as cleaned mixed plastics (CMP), food waste with mixed plastics (FWMP), and a mixture of microplastics (MP). The analyses were carried out with the aid of Fourier-Transform Infrared spectroscopy (FT-IR), Thermo-Gravimetric Analysis (TGA), Microcone Combustion Calorimetry (MCC), and 'bomb' calorimetry. The highest ratio of CMP to FWMP and the lowest amount of MP were obtained utilizing 700 rpm blade rotational speed and 15 s residence time of contaminated plastics in a cutting mill chamber. The plastics were freed from food contamination by 93-97%, which highlights a strong potential of the POC as a solution for 'dry-cleaning' of similar wastes on a larger scale. The main components of the CMP fraction were low-density polyethylene (LDPE), polypropylene (PP), and polyethylene terephthalate (PET), which are recyclable plastics. The knowledge and understanding of thermal degradation behaviours and calorimetric attributes of separated fractions, determined in this study, are essential in informing the industrial players using pyrolysis as a technique for recycling plastics.

2.
Environ Toxicol Chem ; 42(6): 1212-1228, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36971460

RESUMO

While chemicals are vital to modern society through materials, agriculture, textiles, new technology, medicines, and consumer goods, their use is not without risks. Unfortunately, our resources seem inadequate to address the breadth of chemical challenges to the environment and human health. Therefore, it is important we use our intelligence and knowledge wisely to prepare for what lies ahead. The present study used a Delphi-style approach to horizon-scan future chemical threats that need to be considered in the setting of chemicals and environmental policy, which involved a multidisciplinary, multisectoral, and multinational panel of 25 scientists and practitioners (mainly from the United Kingdom, Europe, and other industrialized nations) in a three-stage process. Fifteen issues were shortlisted (from a nominated list of 48), considered by the panel to hold global relevance. The issues span from the need for new chemical manufacturing (including transitioning to non-fossil-fuel feedstocks); challenges from novel materials, food imports, landfills, and tire wear; and opportunities from artificial intelligence, greater data transparency, and the weight-of-evidence approach. The 15 issues can be divided into three classes: new perspectives on historic but insufficiently appreciated chemicals/issues, new or relatively new products and their associated industries, and thinking through approaches we can use to meet these challenges. Chemicals are one threat among many that influence the environment and human health, and interlinkages with wider issues such as climate change and how we mitigate these were clear in this exercise. The horizon scan highlights the value of thinking broadly and consulting widely, considering systems approaches to ensure that interventions appreciate synergies and avoid harmful trade-offs in other areas. We recommend further collaboration between researchers, industry, regulators, and policymakers to perform horizon scanning to inform policymaking, to develop our ability to meet these challenges, and especially to extend the approach to consider also concerns from countries with developing economies. Environ Toxicol Chem 2023;42:1212-1228. © 2023 Crown copyright and The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC. This article is published with the permission of the Controller of HMSO and the King's Printer for Scotland.


Assuntos
Inteligência Artificial , Poluição Ambiental , Humanos , Ecotoxicologia , Agricultura , Europa (Continente)
3.
Polymers (Basel) ; 14(8)2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35458268

RESUMO

In this paper, we report on the thermal degradation behaviours and combustion attributes of some polymers based on polystyrene (PSt). Here, both additive and reactive strategies were employed, through the bulk polymerization route, where the modifying groups incorporated P-atom in various chemical environments. These included oxidation states of III or V, and the loading of phosphorus was kept at ca. 2 wt.% in all cases. The characterization techniques that were employed for the recovered products included spectroscopic, thermal, and calorimetric. It was found that the presence of different modifying groups influenced the degradation characteristics of the base polymer, and also exerted varying degrees of combustion inhibition. In all cases, the modification of the base matrix resulted in a noticeable degree of fire retardance as compared to that of the virgin material. Therefore, some of the modifications presented have the potential to be explored on a commercial scale.

4.
Polymers (Basel) ; 14(7)2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35406320

RESUMO

The thermal and calorimetric characterizations of polymethyl methacrylate-based polymers are reported in this paper. The modifying groups incorporated the phosphorus atom in various chemical environments, including oxidation states of III, or V. Both additive and reactive strategies were employed, where the loading of phosphorus was kept at 2 wt% in all cases. The plaques, obtained through the bulk polymerization route, were subjected to a variety of spectroscopic, thermal and combustion techniques. The results showed that the different modifying groups exerted varying nature, degrees and modes of combustion behaviors, which also included in some cases an additive, and even an antagonistic effect. In the case of covalently-bound phosphonate groups, early cracking of the pendent ester moieties was shown to produce phosphoric acid species, which in turn can act in the condensed phase. For the additives, such as phosphine and phosphine oxide, limited vapor-phase inhibition can be assumed to be operative.

5.
Molecules ; 28(1)2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36615472

RESUMO

Polystyrene (PS) was modified by covalently binding P-, P-N- and/or N- containing fire-retardant moieties through co- or ter-polymerization reactions of styrene with diethyl(acryloyloxymethyl)phosphonate (DEAMP), diethyl-p-vinylbenzyl phosphonate (DEpVBP), acrylic acid-2-[(diethoxyphosphoryl)methylamino]ethyl ester (ADEPMAE) and maleimide (MI). In the present study, the condensed-phase and the gaseous-phase activities of the abovementioned fire retardants within the prepared co- and ter-polymers were evaluated for the first time. Pyrolysis-Gas Chromatography/Mass Spectrometry was employed to identify the volatile products formed during the thermal decomposition of the modified polymers. Benzaldehyde, α-methylstyrene, acetophenone, triethyl phosphate and styrene (monomer, dimer and trimer) were detected in the gaseous phase following the thermal cracking of fire-retardant groups and through main chain scissions. In the case of PS modified with ADEPMAE, the evolution of pyrolysis gases was suppressed by possible inhibitory actions of triethyl phosphate in the gaseous phase. The reactive modification of PS by simultaneously incorporating P- (DEAMP or DEpVBP) and N- (MI) monomeric units, in the chains of ter-polymers, resulted in a predominantly condensed-phase mode of action owing to synergistic P and N interactions. The solid-state 31P NMR spectroscopy, Scanning Electron Microscopy/Energy Dispersive Spectroscopy, Inductively-Coupled Plasma/Optical Emission Spectroscopy and X-ray Photoelectron Spectroscopy of char residues, obtained from ter-polymers, confirmed the retention of the phosphorus species in their structures.


Assuntos
Retardadores de Chama , Organofosfonatos , Poliestirenos/química , Retardadores de Chama/análise , Polímeros/química
6.
Polymers (Basel) ; 13(21)2021 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-34771396

RESUMO

The present paper reports the preliminary results relating to the development, subsequent application, and testing of environmentally benign starch-based formulations for passive fire protection of wood substrates. This study evaluated the effectiveness of starch colloid coatings applied onto the wood surface with a view to improving its performance when exposed to the external heat flux (35 kW/m2) during cone calorimetric tests. The formulations were prepared from aqueous colloid solutions of either starch alone, or in combination with inorganic salts, such as: sodium carbonate, Na2CO3, potassium carbonate, K2CO3, and diammonium hydrogen phosphate, (NH4)2HPO4. The fire performance of Taeda pine wood samples, where their top surfaces were treated with these formulations, was compared with the control sample. The thermal and combustion characteristics of the tested samples were determined with the aid of thermo-gravimetric analysis (TGA), bomb and cone calorimetric techniques, and a steady state tube furnace coupled to an FT-IR spectrometer. A significant boost of fire protection was observed when starch formulations with added inorganic salts were applied onto the wood surfaces, compared with the control sample. For example, the presence of K2CO3 in starch colloid solutions resulted in a notable delay of the ignition and exhibited a reduction in the heat release parameters in comparison with the untreated wood substrate.

7.
Polymers (Basel) ; 12(8)2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-32824153

RESUMO

In the present paper, we report on a detailed study regarding the thermal degradation behaviours of some bio-sourced substrates. These were previously identified as the base materials in the formulations for fireproofing wood plaques through our investigations. The substrates included: ß-cyclodextrin, dextran, potato starch, agar-agar, tamarind kernel powder and chitosan. For deducing the Arrhenius parameters from thermograms obtained through routine thermogravimetric analyses (TGA), we used the standard Flynn-Wall-Ozawa (FWO) method and employed an in-house developed proprietary software. In the former case, five different heating rates were used, whereas in the latter case, the data from one dynamic heating regime were utilized. Given that the FWO method is essentially based on a model-free approach that also makes use of multiple heating rates, it can be considered in the present context as superior to the one that is dependent on a single heating rate. It is also relevant to note here that the values of energy of activation (Ea) obtained in each case should only be considered as apparent values at best. Furthermore, some useful, but limited, correlations were identified between the Ea values and the relevant parameters obtained earlier by us from pyrolysis combustion flow calorimetry (PCFC).

8.
Molecules ; 25(17)2020 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-32825185

RESUMO

Polystyrene, despite its high flammability, is widely used as a thermal insulation material for buildings, for food packaging, in electrical and automotive industries, etc. A number of modification routes have been explored to improve the fire retardance and boost the thermal stability of commercially important styrene-based polymeric products. The earlier strategies mostly involved the use of halogenated fire retardants. Nowadays, these compounds are considered to be persistent pollutants that are hazardous to public and environmental health. Many well-known halogen-based fire retardants, regardless of their chemical structures and modes of action, have been withdrawn from built environments in the European Union, USA, and Canada. This had triggered a growing research interest in, and an industrial demand for, halogen-free alternatives, which not only will reduce the flammability but also address toxicity and bioaccumulation issues. Among the possible options, phosphorus-containing compounds have received greater attention due to their excellent fire-retarding efficiencies and environmentally friendly attributes. Numerous reports were also published on reactive and additive modifications of polystyrene in different forms, particularly in the last decade; hence, the current article aims to provide a critical review of these publications. The authors mainly intend to focus on the chemistries of phosphorous compounds, with the P atom being in different chemical environments, used either as reactive, or additive, fire retardants in styrene-based materials. The chemical pathways and possible mechanisms behind the fire retardance are discussed in this review.


Assuntos
Poluentes Ambientais/análise , Incêndios/prevenção & controle , Retardadores de Chama/análise , Compostos de Fósforo/análise , Polímeros/análise , Estireno/análise , Poluentes Ambientais/química , Compostos de Fósforo/química , Polímeros/química , Estireno/química
9.
Polymers (Basel) ; 12(4)2020 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-32244436

RESUMO

Flammability and combustion of softwood treated with intumescent coatings were studied in the present work. The formulations applied onto wood surfaces contained different ratios of industrial fillers, titanium dioxide TiO2 and aluminium trihydroxide Al(OH)3, and/or bio-fillers, eggshell and rice husk ash. Combustion behaviours of unprotected and protected wood samples have been examined with the aid of cone calorimetry performed under the varied levels of thermal flux ranging from 30 to 50 kW/m². The char residues obtained after the completion of cone calorimetry test at 40 kW/m² were analysed by the Raman spectroscopy. The fire protective properties of the studied coatings were strongly influenced by the nature of the fillers as well as by the intensity of thermal irradiance. The incorporation of bio-based fillers into the water-based intumescent formulations significantly improved fire resistance of wood substrates. For example, at 30 kW/m², the Effective Heat of Combustion was reduced by more than 40%, whilst the average Peak to Heat Release Rate had dropped from 193.2 to 150.3 kW/m² for the wood sample protected with the formulation incorporating two industrial and two bio-fillers. Moreover, an application of the studied coatings resulted in a notable reduction of the back surface temperature of the wood specimens.

10.
Polymers (Basel) ; 12(3)2020 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-32150967

RESUMO

In the present article, we report on the chemical modifications of some carbohydrate-based substrates, such as potato starch, dextran, ß-cyclodextrin, agar agar and tamarind, by reacting with diethylchlorophosphate (DECP), in dispersions in dichloromethane (DCM), in the presence of triethylamine (TEA) as the base. The modified substrates, after recovery and purification, were analyzed for their chemical constitutions, thermal stabilities and calorimetric properties using a variety of analytical techniques. These included: solid-state 31P NMR, inductively coupled plasma-optical emission spectroscopy (ICP-OES), thermogravimetric analysis (TGA) and pyrolysis combustion flow calorimetry (PCFC). The unmodified counterparts were also subjected to the same set of analyses with a view to serving as controls. Phosphorus analyses, primarily through ICP-OES on the recovered samples, showed different degrees of incorporation. Such observations were optionally verified through solid-state 31P NMR spectroscopy. The thermograms of the modified substrates were noticeably different from the unmodified counterparts, both in terms of the general profiles and the amounts of char residues produced. Such observations correlated well with the relevant parameters obtained through PCFC runs. Overall, the modified systems containing phosphorus were found to be less combustible than the parent substrates, and thus can be considered as promising matrices for environmentally benign fire-resistant coatings.

11.
Polymers (Basel) ; 11(11)2019 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-31703395

RESUMO

In the present work, some materials that are commonly used in the construction industry were studied with regard to their thermal degradation characteristics and combustion attributes. These included façade materials for pre-fabricated houses, such as the layers of cross-laminated timber (CLT) and the inner core of aluminium composite panels (ACPs). The relevant investigations were carried out by employing thermo-gravimetric analysis (TGA) and pyrolysis combustion flow calorimetry (PCFC). The Arrhenius parameters and the associated calorimetric quantities, i.e., heat release rates, temperature to the peak heat release rate, heats of combustion, heat release capacities, and char yields, were also evaluated. These parameters showed that CLT is more fire retarded than the polymeric internal core of ACP façade materials. Furthermore, some valuable correlations among the various test quantities were found. For instance, a good correlation exists between the general profiles of the thermograms obtained through TGA runs and the heat release rate (HRR) traces from PCFC measurements. Depending on the nature of the materials, the char yields measured by PCFC can be 4-20 times higher than the ones obtained through TGA.

12.
Polymers (Basel) ; 10(2)2018 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-30966167

RESUMO

One of the effective ways to enhance flame retardance of polyacrylonitrile (PAN) is through a reactive route, primarily developed in our laboratories, which involved chemical modification reactions utilising phosphorus-containing comonomers. In the present study, diethyl(acryloyloxymethyl)phosphonate (DEAMP) and diethyl(1-acryloyloxyethyl)phosphonate (DE1AEP) were synthesised and copolymerised with acrylonitrile (AN), under radical initiation in an inert atmosphere, in aqueous slurries. The thermal degradation and combustion characteristics as well as the extent of flame retardation were mainly assessed with the aid of various thermo-analytical and calorimetric techniques. It was found that the incorporation of phosphonate groups in polymeric chains of PAN resulted in improved flame-retardant characteristics. Furthermore, it was observed that the actual chemical environment of the phosphorus atom in the acrylic phosphonate modifying groups has little effect on the overall thermal degradation and combustion behaviours of the modified PAN systems. It was also observed that the predominant mode of flame retardance occurred in the condensed phase.

13.
Materials (Basel) ; 8(12): 8793-8803, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-28793746

RESUMO

Polymeric materials often exhibit complex combustion behaviours encompassing several stages and involving solid phase, gas phase and interphase. A wide range of qualitative, semi-quantitative and quantitative testing techniques are currently available, both at the laboratory scale and for commercial purposes, for evaluating the decomposition and combustion behaviours of polymeric materials. They include, but are not limited to, techniques such as: thermo-gravimetric analysis (TGA), oxygen bomb calorimetry, limiting oxygen index measurements (LOI), Underwriters Laboratory 94 (UL-94) tests, cone calorimetry, etc. However, none of the above mentioned techniques are capable of quantitatively deciphering the underpinning physiochemical processes leading to the melt flow behaviour of thermoplastics. Melt-flow of polymeric materials can constitute a serious secondary hazard in fire scenarios, for example, if they are present as component parts of a ceiling in an enclosure. In recent years, more quantitative attempts to measure the mass loss and melt-drip behaviour of some commercially important chain- and step-growth polymers have been accomplished. The present article focuses, primarily, on the experimental and some theoretical aspects of melt-flow behaviours of thermoplastics under heat/fire conditions.

14.
Waste Manag ; 32(4): 701-9, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22014379

RESUMO

The current article focuses on gasification as a primary disposal solution for cellulosic wastes derived from chicken farms, and the possibility to recover energy from this process. Wood shavings and chicken litter were characterized with a view to establishing their thermal parameters, compositional natures and calorific values. The main products obtained from the gasification of chicken litter, namely, producer gas, bio-oil and char, were also analysed in order to establish their potential as energy sources. The experimental protocol included bomb calorimetry, pyrolysis combustion flow calorimetry (PCFC), thermo-gravimetric analyses (TGA), differential scanning calorimetry (DSC), Fourier transform infrared (FT-IR) spectroscopy, Raman spectroscopy, elemental analyses, X-ray diffraction (XRD), mineral content analyses and gas chromatography. The mass and energy balances of the gasification unit were also estimated. The results obtained confirmed that gasification is a viable method of chicken litter disposal. In addition to this, it is also possible to recover some energy from the process. However, energy content in the gas-phase was relatively low. This might be due to the low energy efficiency (19.6%) of the gasification unit, which could be improved by changing the operation parameters.


Assuntos
Celulose/química , Conservação de Recursos Energéticos , Gases/química , Eliminação de Resíduos/métodos , Animais , Galinhas , Temperatura Alta , Resíduos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...